CBCS Scheme

usn [· ·	15EE35
	 <u></u> _	l	L	l	L	<u> </u>	L	L	1		

Third Semester B.E. Degree Examination, Dec.2017/Jan.2018 Digital System Design

Time: 3 hrs. Max. Marks: 80

Note: Answer any FIVE full questions, choosing one full question from each module.

Module-1

- 1 a. With basic block diagram, explain the combinational logic circuit (04 Marks)
 - b. Reduce the following function using K-map technique and implement using basic gates
 - i) $f(P, Q, R, S) = \sum m(0, 1, 4, 8, 9, 10) + d(2, 11)$
 - ii) $f(A, B, C, D) = \pi M (0, 2, 4, 10, 11, 14, 15)$

(12 Marks)

OR

2 a. Simplify using the Quine-Mcclusky minimization technique.

 $Y = f(a, b, c, d) = \sum m(0, 2, 8, 10)$

(08 Marks)

b. Simplify the given function using MEV technique.

 $f(a, b, c, d) = \sum (2, 3, 4, 5, 13, 15) + \sum d(8, 9, 10, 11).$

(08 Marks)

Module-2

3 a. With the aid of general structure, clearly distinguish between a decoder and encoder.

(05 Marks)

b. Implement following multiple output function using one 74LS138 and external gates.

 F_1 (A, B, C) = $\sum m$ (1, 4, 5, 7) F_2 (A, B, C) = πM (2, 3, 6, 7)

(06 Marks)

c. Draw the interfacing diagram of ten keypad interface to a digital system using decimal to BCD encoder (IC 74LS147: Decimal to BCD priority encoder). (05 Marks)

OR

4 a. Design a full adder by constructing the truth table and simplify the output equations.

(06 Marks)

b. Write a truth table for two-bit magnitude comparator. Write the Karnaugh map for each output of two bit magnitude comparator and the resulting equation. (10 Marks)

Module-3

- 5 a. What is the difference between a flip-flop and a latch? With logic diagram and truth table, explain the operation of gated SR latch. (08 Marks)
 - b. Explain the operation of Master slave JK Flip-flop along with its circuit diagram. (08 Marks)

OR

- 6 a. Explain the working principle of four bit binary ripple counter, with the help of a logic diagram, timing diagram and counting sequence. (10 Marks)
 - b. With logic diagram and counting sequence explain Mod 4 ring counters.

Module-4

- 7 a. Distinguish between Moore and Mealy model with necessary block diagrams. (08 Marks)
 - b. Give output function, transition table and state diagram by analyzing the sequential circuit shown in Fig. Q7(b). (08 Marks)

OR

- 8 a. Write the basic recommended steps for the design of a clocked synchronous sequential circuit.
 - b. Design a synchronous counter using J-K flip flops to count the sequence 0, 1, 2, 4, 5, 6, 0, 2. Use state diagram and state table. (10 Mark)

Module-5

9 a. Explain brief history of HDL and structure of HDL module.

- (06 Marks
- b. List the classification of VHDL data types. Compare the VHDL data types and Verilog data types.

 (10 Mark)

OR

- 10 a. Explain signal declaration and signal assignment statements with relevant example.
 - (06 Marks)
 - b. Write a data flow description VHDL for a system that has three 1-bit inputs a (1), a(2) and a(3) one 1-bit output b. The least significant bit is a(1); and b is 1, only when (a(1) a(2) a(3)) = 1, 3, 6 or 7 (all in decimal) otherwise b is 0. Derive a minimized Boolean function of the system and write the data flow description.

 (10 Marks)

* * * * *